4,158 research outputs found

    3D Projection Sideband Cooling

    Full text link
    We demonstrate 3D microwave projection sideband cooling of trapped, neutral atoms. The technique employs state-dependent potentials that enable microwave photons to drive vibration-number reducing transitions. The particular cooling sequence we employ uses minimal spontaneous emission, and works even for relatively weakly bound atoms. We cool 76% of atoms to their 3D vibrational ground states in a site-resolvable 3D optical lattice.Comment: 5 pages, 4 figures, Supplemental Material included. To appear in Physical Review Letter

    Producing Bose condensates using optical lattices

    Full text link
    We relate the entropies of ensembles of atoms in optical lattices to atoms in simple traps. We then determine which ensembles of lattice-bound atoms will adiabatically transform into a Bose condensate. This shows a feasible approach to Bose condensation without evaporative cooling.Comment: RevTeX, 5 pages, 5 eps-figure

    Multi-Instantons and Multi-Cuts

    Full text link
    We discuss various aspects of multi-instanton configurations in generic multi-cut matrix models. Explicit formulae are presented in the two-cut case and, in particular, we obtain general formulae for multi-instanton amplitudes in the one-cut matrix model case as a degeneration of the two-cut case. These formulae show that the instanton gas is ultra-dilute, due to the repulsion among the matrix model eigenvalues. We exemplify and test our general results in the cubic matrix model, where multi-instanton amplitudes can be also computed with orthogonal polynomials. As an application, we derive general expressions for multi-instanton contributions in two-dimensional quantum gravity, verifying them by computing the instanton corrections to the string equation. The resulting amplitudes can be interpreted as regularized partition functions for multiple ZZ-branes, which take into full account their back-reaction on the target geometry. Finally, we also derive structural properties of the trans-series solution to the Painleve I equation.Comment: 34 pages, 3 figures, JHEP3.cls; v2: added references, minor changes; v3: added 1 reference, more minor changes, final version for JMP; v4: more typos correcte
    • …
    corecore